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ABSTRACT: In this paper we prove common and coincidence fixed point theorems for asymptotically
regular mapping for various contractive conditions on a Hilbert space setting. we will also study the
uniqueness of solution using available data for common fixed point problem. Our result generalize several
well known results in literature.
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I. INTRODUCTIONS AND PRELIMINARIES

Most fixed point theorem for mapping in metric space satisfying different contraction condition may be extended to
abstract space like Hilbert space, Banach spaces etc. After some modifications Banach fixed point theorem and its
application are commonly (well) known to us.
Many authors have also extended this theorem bringing more contractive conditions  somehow favours the existence
of a fixed point. Almost every condition favours the asymptotic regularity of the mapping after using some
considerations. So the investigation on some regular maps has a important role in fixed point theory.
Sharma and Yuel [7] and Guay and Singh [3] were among the first who used the concept of asymptotic regularity to
prove fixed point theorems for wider class of mappings than a class of mappings introduced and studied by
Ćirić [2].
The purpose of this paper is to prove some common and coincidences fixed point theorems in Hilbert spaces and we
study the well- posedness of their fixed point problem.
Definition 1.1. A self mapping on a closed subset of a Hilbert space is said to be asymptotically regular at a
point x in , if∥ − ∥→ 0 → ∞
where denotes the nth iterate of at .
Definition 1.2. Let C be a closed subset of a Hilbert space H. A sequence {x } in C is said to be asymptotically T -
regular if ∥ x − Tx ∥→ 0 → ∞
Definition 1.3. A pair of mappings (f, T) on a Hilbert space His said to be weakly compatible if f and T commute at
their coincidence point (i.e. f T x = T f x whenever f x = T x. A point y H is called point of coincidence of two self –
mappings f and T on Hif there exists a point x H such that y = T = f
The following lemma was given in [5] in a metric space setting.
Main Result:
Theorem 2.1: Let C be closed subset of a Hilbert space H and S and T be a mapping on C into itself satisfying∥ - ∥ ≤ ∥ - ∥ + ∥ - ∥ + ∥ − ∥ + {∥ − ∥ , ∥ -∥ }+

∥ ∥∥ ∥ ∥ ∥+ ∥ ∥∥ ∥ ∥ ∥ (1.1)

For all , , Where ∝, , , , are non-negative real with + + + + 4 < 1
Thus S and T have a unique common fixed point in C.
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Proof: Let , we define a sequence { } as follows=S , = , = 0,1,2,3 … .. from            (1.2)
We have∥ − ∥ =∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥ + ∥ − ∥ + {∥− ∥ ∥ − ∥ }+

∥ ∥∥ ∥∥ ∥+ ∥ ∥∥ ∥∥ ∥≤ ∥ − ∥ + ∥ − ∥ + ∥ − ∥ + {∥ − ∥ , ∥ − ∥ }

+
∥ ∥∥ ∥∥ ∥+ ∥ ∥∥ ∥ ∥ ∥

Now
(1- − ) ∥ − ∥
(1- − − 2 )≤ + + 2 ∥ − ∥∥ − ∥ ≤ + + 2(1 − − − 2 )
Putting = ( ) < 1
Then we have: ∥ − ∥ ≤ ∥ − ∥
Processing in this way : ∥ − ∥ ≤ ∥ − ∥
For any positive integer p, one gets:∥ − ∥ ≤∥ − ∥ +∥ − ∥ + +≤ ( + + + + ) ∥ − ∥∥ − ∥≤ 1 − ∥ − ∥
Thus ∥ − ∥→ 0 → ∞
Hence | | is a Cauchy sequence in C. Since C is closed subset Of H, then There exists an element such thatlim x→∞

=
Now further, we have∥ − ∥ =(∥ − ∥ +∥ − ∥)≤∥ − ∥ +∥ − ∥ +2Re∥ − ∥ +∥ − ∥≤∥ − ∥ + ∥ − ∥ + ∥ − ∥ + ∥ − v ∥ + {∥ − ∥ , ∥ − ∥ } +∥ ∥∥ ∥ ∥ ∥ +

∥ ∥∥ ∥ ∥ ∥ +2 Re < − , − >
As → ∞, → , →
We have
2 Re < − , − > → 0
Then ∥ − ∥ ≤ ∥ − ∥
Then implies that , , Since < 1 Similarly we get= , then v is a common fixed point of S and T.
For the uniqueness Let ∈ be another fixed point
and . When ≠∥ − ∥ =∥ − ∥∥ − ∥ + ∥ − ∥ + ∥ − ∥ + {∥− ∥ , ∥ − ∥ } +∥ ∥∥ ∥∥ ∥+

∥ ∥∥ ∥∥ ∥ ≤ ( + + ) ∥ −∥
Since + + < 1= that is the common fixed point is unique.
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